ส่งข้อความ
QINGDAO ENNENG MOTOR CO.,LTD.
ผลิตภัณฑ์
ผลิตภัณฑ์
บ้าน > ผลิตภัณฑ์ > PMSM แบบติดตั้งบนพื้นผิว > การควบคุมแบบไร้เซ็นเซอร์ 8kw 15kw PMSM มอเตอร์กำลังสูง 10kw มอเตอร์แม่เหล็กถาวร

การควบคุมแบบไร้เซ็นเซอร์ 8kw 15kw PMSM มอเตอร์กำลังสูง 10kw มอเตอร์แม่เหล็กถาวร

รายละเอียดสินค้า

สถานที่กำเนิด: จีน

ชื่อแบรนด์: ENNENG

ได้รับการรับรอง: CE,UL

หมายเลขรุ่น: พม

เงื่อนไขการชำระเงินและการจัดส่ง

จำนวนสั่งซื้อขั้นต่ำ: 1 ชุด

ราคา: USD 500-5000/set

รายละเอียดการบรรจุ: การบรรจุสมุทร

เวลาการส่งมอบ: 15-120 วัน

เงื่อนไขการชำระเงิน: แอล/C, ที/ที

สามารถในการผลิต: 20,000 ชุด / ปี

รับราคาที่ดีที่สุด
เน้น:

มอเตอร์ PMSM 8kw

,

มอเตอร์ PMSM 15kw

,

มอเตอร์แม่เหล็กถาวร 10kw

ชื่อ:
ผู้ผลิตมอเตอร์ PMSM
ปัจจุบัน:
เครื่องปรับอากาศ
วัสดุ:
แรร์เอิร์ธ NdFeB
ช่วงพลังงาน:
5.5-3000กิโลวัตต์
การติดตั้ง:
ไอเอ็มบี 3 ไอเอ็มบี 5 ไอเอ็มบี 35
บริการ:
โอเอ็มเอ็ม, โออีเอ็ม
คุณสมบัติ:
ประสิทธิภาพสูง ประหยัดพลังงาน การบำรุงรักษาต่ำ
เกรดการป้องกัน:
IP54 IP55 IP68
ควบคุม:
ไร้เซ็นเซอร์
หน้าที่:
S1
ชื่อ:
ผู้ผลิตมอเตอร์ PMSM
ปัจจุบัน:
เครื่องปรับอากาศ
วัสดุ:
แรร์เอิร์ธ NdFeB
ช่วงพลังงาน:
5.5-3000กิโลวัตต์
การติดตั้ง:
ไอเอ็มบี 3 ไอเอ็มบี 5 ไอเอ็มบี 35
บริการ:
โอเอ็มเอ็ม, โออีเอ็ม
คุณสมบัติ:
ประสิทธิภาพสูง ประหยัดพลังงาน การบำรุงรักษาต่ำ
เกรดการป้องกัน:
IP54 IP55 IP68
ควบคุม:
ไร้เซ็นเซอร์
หน้าที่:
S1
การควบคุมแบบไร้เซ็นเซอร์ 8kw 15kw PMSM มอเตอร์กำลังสูง 10kw มอเตอร์แม่เหล็กถาวร

การควบคุมแบบไร้เซนเซอร์ ผู้ผลิตมอเตอร์ PMSM 3 เฟสความเร็วต่ำพลังงานสูง

การควบคุมแบบไร้เซ็นเซอร์ 8kw 15kw PMSM มอเตอร์กำลังสูง 10kw มอเตอร์แม่เหล็กถาวร 0

 

มอเตอร์ซิงโครนัสแม่เหล็กถาวรคืออะไร?

 

มอเตอร์ซิงโครนัสแม่เหล็กถาวร (PMSM) เป็นมอเตอร์ไฟฟ้าประเภทหนึ่งที่ทำงานโดยใช้แม่เหล็กถาวรที่ฝังอยู่ในโรเตอร์บางครั้งเรียกอีกอย่างว่ามอเตอร์ AC แบบไร้แปรงถ่านหรือมอเตอร์แม่เหล็กถาวรแบบซิงโครนัส

 

ใน PMSM สเตเตอร์ (ส่วนที่อยู่กับที่ของมอเตอร์) ประกอบด้วยชุดของขดลวดที่ได้รับพลังงานเป็นลำดับเพื่อสร้างสนามแม่เหล็กหมุนโรเตอร์ (ส่วนที่หมุนของมอเตอร์) ประกอบด้วยชุดของแม่เหล็กถาวรที่จัดไว้เพื่อสร้างสนามแม่เหล็กที่มีปฏิสัมพันธ์กับสนามแม่เหล็กที่ผลิตโดยสเตเตอร์

 

เมื่อสนามแม่เหล็กสองสนามมีปฏิสัมพันธ์กัน โรเตอร์จะหมุน ทำให้เกิดพลังงานกลที่สามารถใช้เพื่อขับเคลื่อนเครื่องจักรหรืออุปกรณ์อื่นๆเนื่องจากแม่เหล็กถาวรในโรเตอร์ให้สนามแม่เหล็กที่แรงและคงที่ PMSM จึงมีประสิทธิภาพสูงและใช้พลังงานน้อยกว่ามอเตอร์ไฟฟ้าประเภทอื่นๆ

 

PMSM ถูกนำไปใช้งานหลากหลายประเภท รวมถึงยานยนต์ไฟฟ้า เครื่องจักรอุตสาหกรรม และเครื่องใช้ในครัวเรือนเป็นที่รู้จักในด้านประสิทธิภาพสูง ความต้องการการบำรุงรักษาต่ำ และการควบคุมที่แม่นยำ ซึ่งทำให้เป็นตัวเลือกยอดนิยมสำหรับระบบประเภทต่างๆ มากมาย

 

การทำงานของมอเตอร์ซิงโครนัสแม่เหล็กถาวร:

 

การทำงานของซิงโครนัสมอเตอร์แม่เหล็กถาวรนั้นง่ายมาก รวดเร็ว และมีประสิทธิภาพเมื่อเทียบกับมอเตอร์ทั่วไปการทำงานของ PMSM ขึ้นอยู่กับสนามแม่เหล็กหมุนของสเตเตอร์และสนามแม่เหล็กคงที่ของโรเตอร์แม่เหล็กถาวรถูกใช้เป็นโรเตอร์เพื่อสร้างฟลักซ์แม่เหล็กคงที่ และทำงานและล็อคด้วยความเร็วแบบซิงโครนัสมอเตอร์ประเภทนี้คล้ายกับมอเตอร์กระแสตรงแบบไร้แปรงถ่าน

 

กลุ่ม phasor เกิดจากการรวมขดลวดของสเตเตอร์เข้าด้วยกันกลุ่มเฟสเซอร์เหล่านี้เชื่อมต่อกันเพื่อสร้างการเชื่อมต่อที่แตกต่างกัน เช่น สตาร์ เดลต้า และเฟสคู่และเฟสเดียวเพื่อลดแรงดันฮาร์มอนิก ขดลวดควรพันกันสั้นๆ

 

เมื่อจ่ายไฟฟ้ากระแสสลับ 3 เฟสให้กับสเตเตอร์ สเตเตอร์จะสร้างสนามแม่เหล็กหมุนและสนามแม่เหล็กคงที่จะถูกเหนี่ยวนำเนื่องจากแม่เหล็กถาวรของโรเตอร์โรเตอร์นี้ทำงานแบบซิงโครไนซ์ด้วยความเร็วซิงโครนัสการทำงานทั้งหมดของ PMSM ขึ้นอยู่กับช่องว่างอากาศระหว่างสเตเตอร์และโรเตอร์ที่ไม่มีโหลด

 

หากช่องว่างอากาศมีขนาดใหญ่ การสูญเสียลมของมอเตอร์จะลดลงขั้วสนามที่สร้างขึ้นโดยแม่เหล็กถาวรนั้นมีความโดดเด่นมอเตอร์ซิงโครนัสแม่เหล็กถาวรไม่ใช่มอเตอร์ที่สตาร์ทเองดังนั้นจึงจำเป็นต้องควบคุมความถี่ตัวแปรของสเตเตอร์ด้วยระบบอิเล็กทรอนิกส์

 

น. โครงสร้างมอเตอร์

 

โครงสร้างมอเตอร์ PM สามารถแยกออกได้เป็นสองประเภท: ภายในและพื้นผิวแต่ละหมวดหมู่มีหมวดย่อยของหมวดหมู่มอเตอร์พื้นผิว PM สามารถมีแม่เหล็กอยู่บนหรือแทรกเข้าไปในพื้นผิวของโรเตอร์ เพื่อเพิ่มความทนทานของการออกแบบการวางตำแหน่งและการออกแบบมอเตอร์แม่เหล็กถาวรภายในอาจแตกต่างกันไปมากแม่เหล็กของมอเตอร์ IPM สามารถใส่เข้าไปเป็นบล็อกขนาดใหญ่หรือทำเป็นเซเมื่อเข้าใกล้แกนกลางมากขึ้นอีกวิธีหนึ่งคือการฝังไว้ในรูปแบบซี่ล้อ

ภาพรายละเอียด
การควบคุมแบบไร้เซ็นเซอร์ 8kw 15kw PMSM มอเตอร์กำลังสูง 10kw มอเตอร์แม่เหล็กถาวร 1
การตรวจจับตัวเองกับการทำงานแบบวงปิด
 
ความก้าวหน้าล่าสุดในเทคโนโลยีไดรฟ์ช่วยให้ไดรฟ์ ac มาตรฐานสามารถ "ตรวจจับตัวเอง" และติดตามตำแหน่งแม่เหล็กของมอเตอร์ได้โดยทั่วไปแล้วระบบวงปิดจะใช้ช่องสัญญาณ z-pulse เพื่อเพิ่มประสิทธิภาพการทำงานผ่านกิจวัตรบางอย่าง ไดรฟ์รู้ตำแหน่งที่แน่นอนของแม่เหล็กมอเตอร์โดยการติดตามช่อง A/B และแก้ไขข้อผิดพลาดด้วยช่อง zการรู้ตำแหน่งที่แน่นอนของแม่เหล็กช่วยให้สามารถผลิตแรงบิดได้อย่างเหมาะสม ส่งผลให้มีประสิทธิภาพสูงสุด
 

ความแตกต่างระหว่างมอเตอร์แม่เหล็กถาวรและมอเตอร์แบบอะซิงโครนัส

 

01. โครงสร้างโรเตอร์

มอเตอร์อะซิงโครนัส: โรเตอร์ประกอบด้วยแกนเหล็กและขดลวด ส่วนใหญ่โรเตอร์กรงกระรอกและลวดพันโรเตอร์กรงกระรอกหล่อด้วยแท่งอะลูมิเนียมสนามแม่เหล็กของแถบอลูมิเนียมที่ตัดสเตเตอร์จะขับเคลื่อนโรเตอร์

 

มอเตอร์ PMSM: แม่เหล็กถาวรฝังอยู่ในขั้วแม่เหล็กของโรเตอร์ และถูกขับเคลื่อนให้หมุนโดยสนามแม่เหล็กหมุนที่สร้างขึ้นในสเตเตอร์ตามหลักการของขั้วแม่เหล็กในเฟสเดียวกันเพื่อดึงดูดแรงผลักที่แตกต่างกัน

 

02. ประสิทธิภาพ

มอเตอร์แบบอะซิงโครนัส: จำเป็นต้องดูดซับกระแสจากการกระตุ้นของกริด ส่งผลให้มีการสูญเสียพลังงานจำนวนหนึ่ง กระแสรีแอกทีฟของมอเตอร์ และตัวประกอบกำลังต่ำ

 

มอเตอร์ PMSM: สนามแม่เหล็กมาจากแม่เหล็กถาวร โรเตอร์ไม่ต้องการกระแสที่น่าตื่นเต้น และปรับปรุงประสิทธิภาพของมอเตอร์

 

03. ปริมาตรและน้ำหนัก

การใช้วัสดุแม่เหล็กถาวรที่มีประสิทธิภาพสูงทำให้สนามแม่เหล็กช่องว่างอากาศของมอเตอร์ซิงโครนัสแม่เหล็กถาวรมีขนาดใหญ่กว่าของมอเตอร์แบบอะซิงโครนัสขนาดและน้ำหนักลดลงเมื่อเทียบกับมอเตอร์แบบอะซิงโครนัสจะมีขนาดเฟรมต่ำกว่ามอเตอร์แบบอะซิงโครนัสหนึ่งหรือสองขนาด

 

04. มอเตอร์สตาร์ทปัจจุบัน

มอเตอร์แบบอะซิงโครนัส: เริ่มต้นโดยตรงด้วยไฟฟ้าความถี่ไฟฟ้า และกระแสเริ่มต้นมีขนาดใหญ่ ซึ่งสามารถเข้าถึง 5 ถึง 7 เท่าของกระแสไฟฟ้าที่กำหนด ซึ่งมีผลกระทบอย่างมากต่อโครงข่ายไฟฟ้าในทันทีกระแสเริ่มต้นขนาดใหญ่ทำให้แรงดันต้านทานการรั่วไหลลดลงของขดลวดสเตเตอร์เพิ่มขึ้น และแรงบิดเริ่มต้นมีขนาดเล็กจึงไม่สามารถสตาร์ทงานหนักได้แม้ว่าจะใช้อินเวอร์เตอร์ แต่ก็สามารถเริ่มทำงานภายในช่วงกระแสไฟขาออกที่กำหนดเท่านั้น

 

มอเตอร์ PMSM: ขับเคลื่อนโดยตัวควบคุมเฉพาะซึ่งไม่มีข้อกำหนดเอาต์พุตที่กำหนดของตัวลดขนาดกระแสเริ่มต้นจริงมีขนาดเล็ก กระแสจะค่อยๆ เพิ่มขึ้นตามโหลด และแรงบิดเริ่มต้นมีขนาดใหญ่

 

05. ตัวประกอบกำลัง

มอเตอร์แบบอะซิงโครนัสมีตัวประกอบกำลังต่ำ ต้องดูดซับกระแสรีแอกทีฟจำนวนมากจากโครงข่ายไฟฟ้า กระแสเริ่มต้นขนาดใหญ่ของมอเตอร์แบบอะซิงโครนัสจะทำให้เกิดผลกระทบระยะสั้นต่อโครงข่ายไฟฟ้า และการใช้งานระยะยาวจะทำให้เกิดความเสียหาย ไปยังอุปกรณ์กริดไฟฟ้าและหม้อแปลงไฟฟ้าจำเป็นต้องเพิ่มหน่วยชดเชยพลังงานและทำการชดเชยพลังงานปฏิกิริยาเพื่อให้มั่นใจในคุณภาพของกริดพลังงานและเพิ่มต้นทุนของอุปกรณ์

 

ไม่มีกระแสเหนี่ยวนำในโรเตอร์ของมอเตอร์ซิงโครนัสแม่เหล็กถาวร และตัวประกอบกำลังของมอเตอร์สูง ซึ่งช่วยปรับปรุงปัจจัยด้านคุณภาพของกริดไฟฟ้า และลดความจำเป็นในการติดตั้งตัวชดเชย

 

06. การบำรุงรักษา

มอเตอร์แบบอะซิงโครนัส + โครงสร้างตัวลดจะสร้างการสั่นสะเทือน ความร้อน อัตราความล้มเหลวสูง การใช้น้ำมันหล่อลื่นจำนวนมาก และค่าบำรุงรักษาด้วยตนเองสูงมันจะทำให้เกิดการสูญเสียการหยุดทำงานบางอย่าง

 

มอเตอร์ซิงโครนัสแม่เหล็กถาวรสามเฟสขับเคลื่อนอุปกรณ์โดยตรงเนื่องจากตัวลดถูกกำจัดออกไปแล้ว ความเร็วเอาต์พุตของมอเตอร์จึงต่ำ เสียงรบกวนทางกลต่ำ การสั่นสะเทือนทางกลมีขนาดเล็ก และอัตราความล้มเหลวต่ำระบบขับเคลื่อนทั้งหมดแทบไม่ต้องบำรุงรักษา

 

EMF และสมการแรงบิด

 

ในเครื่องซิงโครนัส EMF เฉลี่ยที่เหนี่ยวนำต่อเฟสเรียกว่าไดนามิกเหนี่ยวนำ EMF ในมอเตอร์ซิงโครนัส ฟลักซ์ที่ตัดโดยตัวนำแต่ละตัวต่อรอบคือ Pϕ Weber

จากนั้นเวลาที่ใช้ในการหมุนหนึ่งรอบให้เสร็จสมบูรณ์คือ 60/N วินาที

 

EMF เฉลี่ยที่เหนี่ยวนำต่อตัวนำสามารถคำนวณได้โดยใช้

 

( PϕN / 60 ) x Zph = ( PϕN / 60 ) x 2Tph

 

โดยที่ Tph = Zph / 2

 

ดังนั้น EMF เฉลี่ยต่อเฟสคือ

 

= 4 x ϕ x Tph x PN/120 = 4ϕfTph

โดยที่ Tph = ไม่ของรอบที่เชื่อมต่อแบบอนุกรมต่อเฟส

 

ϕ = ฟลักซ์/ขั้วในเวเบอร์

 

พ=ไม่ของเสา

 

F = ความถี่เป็น Hz

 

Zph = ไม่ของตัวนำที่เชื่อมต่อแบบอนุกรมต่อเฟส.= Zph/3

 

สมการ EMF ขึ้นอยู่กับขดลวดและตัวนำบนสเตเตอร์สำหรับมอเตอร์นี้ จะพิจารณาปัจจัยการกระจาย Kd และระยะพิทช์แฟกเตอร์ Kp ด้วย

 

ดังนั้น E = 4 x ϕ xfx Tph xKd x Kp

 

สมการแรงบิดของมอเตอร์ซิงโครนัสแม่เหล็กถาวรจะได้รับดังนี้

 

T = (3 x Eph x Iph x sinβ) / ωm

 

 

มอเตอร์ไฟฟ้ากระแสสลับชนิดแม่เหล็กถาวร (PMAC) มีการใช้งานที่หลากหลาย ได้แก่ :

 

เครื่องจักรอุตสาหกรรม: มอเตอร์ PMAC ใช้ในเครื่องจักรอุตสาหกรรมหลายประเภท เช่น ปั๊ม คอมเพรสเซอร์ พัดลม และเครื่องมือกลมีประสิทธิภาพสูง ความหนาแน่นของพลังงานสูง และการควบคุมที่แม่นยำ ทำให้เหมาะสำหรับการใช้งานเหล่านี้

 

วิทยาการหุ่นยนต์: มอเตอร์ PMAC ใช้ในวิทยาการหุ่นยนต์และระบบอัตโนมัติ ซึ่งมีความหนาแน่นของแรงบิดสูง การควบคุมที่แม่นยำ และประสิทธิภาพสูงมักใช้ในแขนหุ่นยนต์ กริปเปอร์ และระบบควบคุมการเคลื่อนไหวอื่นๆ

 

ระบบ HVAC: มอเตอร์ PMAC ใช้ในระบบทำความร้อน การระบายอากาศ และการปรับอากาศ (HVAC) ซึ่งให้ประสิทธิภาพสูง การควบคุมที่แม่นยำ และระดับเสียงรบกวนต่ำมักใช้ในพัดลมและปั๊มในระบบเหล่านี้

 

ระบบพลังงานหมุนเวียน: มอเตอร์ PMAC ถูกใช้ในระบบพลังงานหมุนเวียน เช่น กังหันลมและเครื่องติดตามแสงอาทิตย์ ซึ่งให้ประสิทธิภาพสูง ความหนาแน่นของพลังงานสูง และการควบคุมที่แม่นยำมักใช้ในเครื่องกำเนิดไฟฟ้าและระบบติดตามในระบบเหล่านี้

 

อุปกรณ์ทางการแพทย์: มอเตอร์ PMAC ใช้ในอุปกรณ์ทางการแพทย์ เช่น เครื่อง MRI ซึ่งมีความหนาแน่นของแรงบิดสูง การควบคุมที่แม่นยำ และระดับเสียงรบกวนต่ำมักใช้ในมอเตอร์ที่ขับเคลื่อนชิ้นส่วนที่เคลื่อนไหวในเครื่องจักรเหล่านี้

 

SPM กับ IPM

 

มอเตอร์ PM สามารถแบ่งออกเป็นสองประเภทหลัก: มอเตอร์แม่เหล็กถาวรพื้นผิว (SPM) และมอเตอร์แม่เหล็กถาวรภายใน (IPM)การออกแบบมอเตอร์ทั้งสองประเภทไม่มีแท่งโรเตอร์ทั้งสองประเภทสร้างฟลักซ์แม่เหล็กโดยแม่เหล็กถาวรที่ติดอยู่กับหรือด้านในของโรเตอร์

มอเตอร์ SPM มีแม่เหล็กติดอยู่ที่ด้านนอกของพื้นผิวโรเตอร์เนื่องจากการติดตั้งเชิงกลนี้ ความแข็งแรงเชิงกลจึงอ่อนแอกว่ามอเตอร์ IPMความแข็งแรงเชิงกลที่อ่อนลงจะจำกัดความเร็วเชิงกลที่ปลอดภัยสูงสุดของมอเตอร์นอกจากนี้ มอเตอร์เหล่านี้ยังมีความเค็มแม่เหล็กที่จำกัดมาก (Ld ≈ Lq)ค่าความเหนี่ยวนำที่วัดได้ที่ขั้วโรเตอร์นั้นสอดคล้องกันโดยไม่คำนึงถึงตำแหน่งของโรเตอร์เนื่องจากอัตราส่วนความเด่นที่ใกล้เคียงกัน การออกแบบมอเตอร์ SPM จึงอาศัยองค์ประกอบแรงบิดแม่เหล็กอย่างมาก หากไม่สมบูรณ์ เพื่อสร้างแรงบิด

 

มอเตอร์ IPM มีแม่เหล็กถาวรฝังอยู่ในตัวโรเตอร์ตำแหน่งของแม่เหล็กถาวรทำให้มอเตอร์ IPM มีเสียงกลไกดีมาก และเหมาะสำหรับการทำงานที่ความเร็วสูงมาก ไม่เหมือนกับ SPMมอเตอร์เหล่านี้ถูกกำหนดโดยอัตราส่วนความเค็มแม่เหล็กที่ค่อนข้างสูง (Lq > Ld)เนื่องจากความเค็มแม่เหล็ก มอเตอร์ IPM มีความสามารถในการสร้างแรงบิดโดยใช้ประโยชน์จากทั้งส่วนประกอบแม่เหล็กและแรงบิดแบบไม่ฝืนของมอเตอร์

ฟลักซ์อ่อนตัวลง/แรงขึ้นของมอเตอร์ PM

 

ฟลักซ์ในมอเตอร์แม่เหล็กถาวรถูกสร้างขึ้นโดยแม่เหล็กฟิลด์ฟลักซ์เป็นไปตามเส้นทางที่กำหนด ซึ่งสามารถส่งเสริมหรือต่อต้านได้การเพิ่มหรือเพิ่มสนามฟลักซ์จะทำให้มอเตอร์สามารถเพิ่มการผลิตแรงบิดได้ชั่วคราวการต่อต้านสนามฟลักซ์จะลบล้างสนามแม่เหล็กที่มีอยู่ของมอเตอร์สนามแม่เหล็กที่ลดลงจะจำกัดการผลิตแรงบิด แต่ลดแรงดัน back-emfแรงดัน back-emf ที่ลดลงจะช่วยเพิ่มแรงดันให้มอเตอร์ทำงานด้วยความเร็วเอาต์พุตที่สูงขึ้นการทำงานทั้งสองประเภทต้องใช้กระแสมอเตอร์เพิ่มเติมทิศทางของกระแสมอเตอร์ทั่วแกน d ซึ่งกำหนดโดยตัวควบคุมมอเตอร์ จะกำหนดเอฟเฟกต์ที่ต้องการ

 

ปัญหาเล็กๆ น้อยๆ ที่มักมองข้ามเกี่ยวกับมอเตอร์:

 

1. ทำไมจึงใช้มอเตอร์ทั่วไปในพื้นที่ราบสูงไม่ได้?

ระดับความสูงมีผลเสียต่ออุณหภูมิของมอเตอร์ที่เพิ่มขึ้น โคโรนาของมอเตอร์ (มอเตอร์ไฟฟ้าแรงสูง) และการเปลี่ยนของมอเตอร์กระแสตรงควรสังเกตสามด้านต่อไปนี้:

(1) ยิ่งระดับความสูงสูงขึ้น อุณหภูมิของมอเตอร์ก็จะยิ่งสูงขึ้น และกำลังขับที่ลดลงอย่างไรก็ตาม เมื่ออุณหภูมิลดลงเมื่อระดับความสูงเพิ่มขึ้นมากพอที่จะชดเชยอิทธิพลของระดับความสูงที่มีต่ออุณหภูมิที่เพิ่มขึ้น กำลังขับพิกัดของมอเตอร์จะยังคงไม่เปลี่ยนแปลง

(2) ควรใช้มาตรการป้องกันโคโรนาเมื่อใช้มอเตอร์ไฟฟ้าแรงสูงในที่ราบสูง

(3) ความสูงไม่ดีสำหรับการเปลี่ยนมอเตอร์กระแสตรง ดังนั้นให้ใส่ใจกับการเลือกวัสดุแปรงถ่าน

 

2. เหตุใดมอเตอร์จึงไม่เหมาะสำหรับการใช้งานที่มีน้ำหนักเบา

เมื่อมอเตอร์ทำงานที่โหลดเบา จะทำให้เกิด:

(1) ตัวประกอบกำลังของมอเตอร์ต่ำ

(2) ประสิทธิภาพของมอเตอร์ต่ำ

(3) จะทำให้เกิดการสูญเสียอุปกรณ์และการทำงานที่ไม่ประหยัด

 

3. ทำไมมอเตอร์สตาร์ทในสภาพแวดล้อมที่เย็นไม่ได้?

การใช้มอเตอร์มากเกินไปในสภาพแวดล้อมที่มีอุณหภูมิต่ำจะทำให้:

(1) รอยแตกของฉนวนมอเตอร์

(2) จาระบีแบริ่งค้าง;

(3) ผงประสานของข้อต่อลวดเป็นผง

ดังนั้น ควรอุ่นมอเตอร์และเก็บไว้ในสภาพแวดล้อมที่เย็น และควรตรวจสอบขดลวดและตลับลูกปืนก่อนเดินเครื่อง

 

4. ทำไมมอเตอร์ 60Hz ถึงใช้แหล่งจ่ายไฟ 50Hz ไม่ได้

เมื่อออกแบบมอเตอร์ โดยทั่วไปแผ่นเหล็กซิลิกอนจะทำงานในบริเวณความอิ่มตัวของเส้นโค้งการทำให้เป็นแม่เหล็กเมื่อแรงดันไฟฟ้าของแหล่งจ่ายไฟคงที่ การลดความถี่จะเพิ่มฟลักซ์แม่เหล็กและกระแสกระตุ้น ส่งผลให้กระแสมอเตอร์และการใช้ทองแดงเพิ่มขึ้น ซึ่งจะนำไปสู่การเพิ่มอุณหภูมิของมอเตอร์ในที่สุดในกรณีที่รุนแรงอาจทำให้มอเตอร์ไหม้ได้เนื่องจากขดลวดร้อนจัด

 

5.มอเตอร์สตาร์ทอ่อน

การสตาร์ทแบบนุ่มนวลมีผลในการประหยัดพลังงานที่จำกัด แต่สามารถลดผลกระทบของการเริ่มต้นระบบบนกริดพลังงาน และยังสามารถสตาร์ทได้อย่างราบรื่นเพื่อปกป้องชุดมอเตอร์ตามทฤษฎีการอนุรักษ์พลังงาน เนื่องจากการเพิ่มวงจรควบคุมที่ค่อนข้างซับซ้อน การสตาร์ทแบบนุ่มนวลไม่เพียงแต่ไม่ประหยัดพลังงานเท่านั้น แต่ยังเพิ่มการใช้พลังงานอีกด้วยแต่สามารถลดกระแสเริ่มต้นของวงจรและมีบทบาทในการป้องกัน

ผลิตภัณฑ์ที่คล้ายกัน