รายละเอียดสินค้า
สถานที่กำเนิด: จีน
ชื่อแบรนด์: ENNENG
ได้รับการรับรอง: CE,UL
หมายเลขรุ่น: พม
เงื่อนไขการชำระเงินและการจัดส่ง
จำนวนสั่งซื้อขั้นต่ำ: 1 ชุด
ราคา: USD 500-5000/set
รายละเอียดการบรรจุ: การบรรจุสมุทร
เวลาการส่งมอบ: 15-120 วัน
เงื่อนไขการชำระเงิน: แอล/C, ที/ที
สามารถในการผลิต: 20,000 ชุด / ปี
ชื่อ: |
มอเตอร์ซิงโครนัสแม่เหล็กถาวรภายใน |
ปัจจุบัน: |
เครื่องปรับอากาศ |
วัสดุ: |
แรร์เอิร์ธ NdFeB |
พิมพ์: |
PMSM ภายใน |
ช่วงพลังงาน: |
5.5-3000กิโลวัตต์ |
การติดตั้ง: |
ไอเอ็มบี 3 ไอเอ็มบี 5 ไอเอ็มบี 35 |
แรงดันไฟฟ้า: |
380v, 660v, 1140v, 3300v, 6kv, 10kv |
ข้อดี: |
โครงสร้างเรียบง่าย ขนาดเล็ก |
คูลลิ่ง: |
IC411, IC416 |
เกรดการป้องกัน: |
IP54 IP55 IP68 |
ชื่อ: |
มอเตอร์ซิงโครนัสแม่เหล็กถาวรภายใน |
ปัจจุบัน: |
เครื่องปรับอากาศ |
วัสดุ: |
แรร์เอิร์ธ NdFeB |
พิมพ์: |
PMSM ภายใน |
ช่วงพลังงาน: |
5.5-3000กิโลวัตต์ |
การติดตั้ง: |
ไอเอ็มบี 3 ไอเอ็มบี 5 ไอเอ็มบี 35 |
แรงดันไฟฟ้า: |
380v, 660v, 1140v, 3300v, 6kv, 10kv |
ข้อดี: |
โครงสร้างเรียบง่าย ขนาดเล็ก |
คูลลิ่ง: |
IC411, IC416 |
เกรดการป้องกัน: |
IP54 IP55 IP68 |
โครงสร้างที่เรียบง่าย Neodymium Rare Earth มอเตอร์แม่เหล็กถาวรสามเฟส
มอเตอร์ซิงโครนัสแม่เหล็กถาวรคืออะไร?
มอเตอร์ซิงโครนัสแม่เหล็กถาวรส่วนใหญ่ประกอบด้วยสเตเตอร์ โรเตอร์ แชสซี ฝาครอบหน้า-หลัง ตลับลูกปืน ฯลฯ โครงสร้างของสเตเตอร์โดยทั่วไปเหมือนกับมอเตอร์อะซิงโครนัสทั่วไป และความแตกต่างหลักระหว่างซิงโครนัสแม่เหล็กถาวร มอเตอร์และมอเตอร์ชนิดอื่นเป็นโรเตอร์
วัสดุแม่เหล็กถาวรที่มีแม่เหล็กก่อนเป็นแม่เหล็ก (ประจุแม่เหล็ก) บนพื้นผิวหรือภายในแม่เหล็กถาวรของมอเตอร์ ให้สนามแม่เหล็กช่องว่างอากาศที่จำเป็นสำหรับมอเตอร์โครงสร้างโรเตอร์นี้สามารถลดปริมาณมอเตอร์ ลดการสูญเสีย และปรับปรุงประสิทธิภาพได้อย่างมีประสิทธิภาพ
ทำไมต้องเลือกมอเตอร์ไฟฟ้ากระแสสลับแบบแม่เหล็กถาวร?
มอเตอร์ไฟฟ้ากระแสสลับชนิดแม่เหล็กถาวร (PMAC) มีข้อดีหลายประการเหนือมอเตอร์ประเภทอื่นๆ ได้แก่:
ประสิทธิภาพสูง: มอเตอร์ PMAC มีประสิทธิภาพสูงเนื่องจากไม่มีการสูญเสียทองแดงของโรเตอร์และการสูญเสียขดลวดที่ลดลงสามารถบรรลุประสิทธิภาพได้สูงถึง 97% ส่งผลให้ประหยัดพลังงานได้อย่างมาก
ความหนาแน่นของพลังงานสูง: มอเตอร์ PMAC มีความหนาแน่นของพลังงานสูงกว่าเมื่อเทียบกับมอเตอร์ประเภทอื่น ซึ่งหมายความว่าสามารถผลิตพลังงานได้มากขึ้นต่อหน่วยของขนาดและน้ำหนักทำให้เหมาะสำหรับการใช้งานในพื้นที่จำกัด
ความหนาแน่นของแรงบิดสูง: มอเตอร์ PMAC มีความหนาแน่นของแรงบิดสูง ซึ่งหมายความว่าสามารถผลิตแรงบิดต่อหน่วยขนาดและน้ำหนักได้มากขึ้นทำให้เหมาะสำหรับการใช้งานที่ต้องการแรงบิดสูง
ลดการบำรุงรักษา: เนื่องจากมอเตอร์ PMAC ไม่มีแปรง จึงต้องการการบำรุงรักษาน้อยกว่าและมีอายุการใช้งานยาวนานกว่ามอเตอร์ประเภทอื่นๆ
การควบคุมที่ได้รับการปรับปรุง: มอเตอร์ PMAC มีการควบคุมความเร็วและแรงบิดที่ดีกว่าเมื่อเทียบกับมอเตอร์ประเภทอื่น ทำให้เหมาะสำหรับการใช้งานที่ต้องการการควบคุมที่แม่นยำ
เป็นมิตรกับสิ่งแวดล้อม: มอเตอร์ PMAC เป็นมิตรกับสิ่งแวดล้อมมากกว่ามอเตอร์ประเภทอื่นๆ เนื่องจากใช้โลหะหายาก ซึ่งรีไซเคิลได้ง่ายกว่าและก่อให้เกิดของเสียน้อยกว่าเมื่อเทียบกับมอเตอร์ประเภทอื่นๆ
โดยรวมแล้ว ข้อดีของมอเตอร์ PMAC ทำให้เป็นตัวเลือกที่ยอดเยี่ยมสำหรับการใช้งานที่หลากหลาย รวมถึงยานยนต์ไฟฟ้า เครื่องจักรอุตสาหกรรม และระบบพลังงานหมุนเวียน
มอเตอร์ไฟฟ้ากระแสสลับชนิดแม่เหล็กถาวร (PMAC) มีการใช้งานที่หลากหลาย ได้แก่ :
เครื่องจักรอุตสาหกรรม: มอเตอร์ PMAC ใช้ในเครื่องจักรอุตสาหกรรมหลายประเภท เช่น ปั๊ม คอมเพรสเซอร์ พัดลม และเครื่องมือกลมีประสิทธิภาพสูง ความหนาแน่นของพลังงานสูง และการควบคุมที่แม่นยำ ทำให้เหมาะสำหรับการใช้งานเหล่านี้
วิทยาการหุ่นยนต์: มอเตอร์ PMAC ใช้ในวิทยาการหุ่นยนต์และระบบอัตโนมัติ ซึ่งมีความหนาแน่นของแรงบิดสูง การควบคุมที่แม่นยำ และประสิทธิภาพสูงมักใช้ในแขนหุ่นยนต์ กริปเปอร์ และระบบควบคุมการเคลื่อนไหวอื่นๆ
ระบบ HVAC: มอเตอร์ PMAC ใช้ในระบบทำความร้อน การระบายอากาศ และการปรับอากาศ (HVAC) ซึ่งให้ประสิทธิภาพสูง การควบคุมที่แม่นยำ และระดับเสียงรบกวนต่ำมักใช้ในพัดลมและปั๊มในระบบเหล่านี้
ระบบพลังงานหมุนเวียน: มอเตอร์ PMAC ถูกใช้ในระบบพลังงานหมุนเวียน เช่น กังหันลมและเครื่องติดตามแสงอาทิตย์ ซึ่งให้ประสิทธิภาพสูง ความหนาแน่นของพลังงานสูง และการควบคุมที่แม่นยำมักใช้ในเครื่องกำเนิดไฟฟ้าและระบบติดตามในระบบเหล่านี้
อุปกรณ์ทางการแพทย์: มอเตอร์ PMAC ใช้ในอุปกรณ์ทางการแพทย์ เช่น เครื่อง MRI ซึ่งมีความหนาแน่นของแรงบิดสูง การควบคุมที่แม่นยำ และระดับเสียงรบกวนต่ำมักใช้ในมอเตอร์ที่ขับเคลื่อนชิ้นส่วนที่เคลื่อนไหวในเครื่องจักรเหล่านี้
การทำงานของมอเตอร์ซิงโครนัสแม่เหล็กถาวร:
การทำงานของซิงโครนัสมอเตอร์แม่เหล็กถาวรนั้นง่ายมาก รวดเร็ว และมีประสิทธิภาพเมื่อเทียบกับมอเตอร์ทั่วไปการทำงานของ PMSM ขึ้นอยู่กับสนามแม่เหล็กหมุนของสเตเตอร์และสนามแม่เหล็กคงที่ของโรเตอร์แม่เหล็กถาวรถูกใช้เป็นโรเตอร์เพื่อสร้างฟลักซ์แม่เหล็กคงที่ และทำงานและล็อคด้วยความเร็วแบบซิงโครนัสมอเตอร์ประเภทนี้คล้ายกับมอเตอร์กระแสตรงแบบไร้แปรงถ่าน
กลุ่ม phasor เกิดจากการรวมขดลวดของสเตเตอร์เข้าด้วยกันกลุ่มเฟสเซอร์เหล่านี้เชื่อมต่อกันเพื่อสร้างการเชื่อมต่อที่แตกต่างกัน เช่น สตาร์ เดลต้า และเฟสคู่และเฟสเดียวเพื่อลดแรงดันฮาร์มอนิก ขดลวดควรพันกันสั้นๆ
เมื่อจ่ายไฟฟ้ากระแสสลับ 3 เฟสให้กับสเตเตอร์ สเตเตอร์จะสร้างสนามแม่เหล็กหมุนและสนามแม่เหล็กคงที่จะถูกเหนี่ยวนำเนื่องจากแม่เหล็กถาวรของโรเตอร์โรเตอร์นี้ทำงานแบบซิงโครไนซ์ด้วยความเร็วซิงโครนัสการทำงานทั้งหมดของ PMSM ขึ้นอยู่กับช่องว่างอากาศระหว่างสเตเตอร์และโรเตอร์ที่ไม่มีโหลด
หากช่องว่างอากาศมีขนาดใหญ่ การสูญเสียลมของมอเตอร์จะลดลงขั้วสนามที่สร้างขึ้นโดยแม่เหล็กถาวรนั้นมีความโดดเด่นมอเตอร์ซิงโครนัสแม่เหล็กถาวรไม่ใช่มอเตอร์ที่สตาร์ทเองดังนั้นจึงจำเป็นต้องควบคุมความถี่ตัวแปรของสเตเตอร์ด้วยระบบอิเล็กทรอนิกส์
EMF และสมการแรงบิด
ในเครื่องซิงโครนัส EMF เฉลี่ยที่เหนี่ยวนำต่อเฟสเรียกว่าไดนามิกเหนี่ยวนำ EMF ในมอเตอร์ซิงโครนัส ฟลักซ์ที่ตัดโดยตัวนำแต่ละตัวต่อรอบคือ Pϕ Weber
จากนั้นเวลาที่ใช้ในการหมุนหนึ่งรอบให้เสร็จสมบูรณ์คือ 60/N วินาที
EMF เฉลี่ยที่เหนี่ยวนำต่อตัวนำสามารถคำนวณได้โดยใช้
( PϕN / 60 ) x Zph = ( PϕN / 60 ) x 2Tph
โดยที่ Tph = Zph / 2
ดังนั้น EMF เฉลี่ยต่อเฟสคือ
= 4 x ϕ x Tph x PN/120 = 4ϕfTph
โดยที่ Tph = ไม่ของรอบที่เชื่อมต่อแบบอนุกรมต่อเฟส
ϕ = ฟลักซ์/ขั้วในเวเบอร์
พ=ไม่ของเสา
F = ความถี่เป็น Hz
Zph = ไม่ของตัวนำที่เชื่อมต่อแบบอนุกรมต่อเฟส.= Zph/3
สมการ EMF ขึ้นอยู่กับขดลวดและตัวนำบนสเตเตอร์สำหรับมอเตอร์นี้ จะพิจารณาปัจจัยการกระจาย Kd และระยะพิทช์แฟกเตอร์ Kp ด้วย
ดังนั้น E = 4 x ϕ xfx Tph xKd x Kp
สมการแรงบิดของมอเตอร์ซิงโครนัสแม่เหล็กถาวรจะได้รับดังนี้
T = (3 x Eph x Iph x sinβ) / ωm
โครงสร้างของมอเตอร์ IPM (แม่เหล็กถาวรภายใน)
มอเตอร์ SPM (แม่เหล็กถาวรพื้นผิว) แบบเดิมมีโครงสร้างที่แม่เหล็กถาวรติดอยู่กับพื้นผิวโรเตอร์ใช้แรงบิดแม่เหล็กจากแม่เหล็กเท่านั้นในทางกลับกัน มอเตอร์ IPM ใช้การฝืนแรงต้านแม่เหล็กนอกเหนือไปจากแรงบิดของแม่เหล็กโดยการฝังแม่เหล็กถาวรไว้ในตัวโรเตอร์
โครงสร้างโรเตอร์ของมอเตอร์ SPM กับ IPM
คุณสมบัติมอเตอร์ IPM (Interior Permanent Magnet)
แรงบิดสูงและประสิทธิภาพสูง
แรงบิดสูงและเอาต์พุตสูงทำได้โดยใช้แรงบิดแบบไม่เต็มใจนอกเหนือจากแรงบิดแม่เหล็ก
การดำเนินการประหยัดพลังงาน
ใช้พลังงานน้อยลงถึง 30% เมื่อเทียบกับมอเตอร์ SPM ทั่วไป
การหมุนด้วยความเร็วสูง
สามารถตอบสนองการหมุนของมอเตอร์ความเร็วสูงโดยการควบคุมแรงบิดสองประเภทโดยใช้การควบคุมแบบเวกเตอร์
ความปลอดภัย
เนื่องจากมีแม่เหล็กถาวรฝังอยู่ ความปลอดภัยทางกลจึงดีขึ้น เนื่องจากแม่เหล็กจะไม่หลุดออกเนื่องจากแรงเหวี่ยง ซึ่งแตกต่างจาก SPM
คุณสมบัติการควบคุมเวกเตอร์
ในขณะที่ระบบทั่วไป (ระบบการนำไฟฟ้า 120 องศา) มีกระแสที่ส่งในมอเตอร์เป็นคลื่นสี่เหลี่ยม ตัวควบคุมเวกเตอร์สร้างแรงดันไฟฟ้าซึ่งกลายเป็นคลื่นไซน์ไปยังตำแหน่งของโรเตอร์ (มุมของแม่เหล็ก) ดังนั้นจึงเป็นไปได้ที่จะ ควบคุมกระแสมอเตอร์
มอเตอร์ซิงโครนัสแม่เหล็กถาวรมีลักษณะดังต่อไปนี้:
1. ประสิทธิภาพที่ได้รับการจัดอันดับสูงกว่ามอเตอร์แบบอะซิงโครนัสปกติ 2% ถึง 5%
2. ประสิทธิภาพเพิ่มขึ้นอย่างรวดเร็วเมื่อโหลดเพิ่มขึ้นเมื่อโหลดเปลี่ยนแปลงภายในช่วง 25% ถึง 120% จะรักษาประสิทธิภาพสูงช่วงการทำงานที่มีประสิทธิภาพสูงนั้นสูงกว่ามอเตอร์แบบอะซิงโครนัสทั่วไปมากโหลดเบา โหลดแปรผัน และเต็มโหลด ล้วนมีผลในการประหยัดพลังงานอย่างมาก
3. ตัวประกอบกำลังสูงถึง 0.95 และสูงกว่า ไม่จำเป็นต้องมีการชดเชยปฏิกิริยา
4. ตัวประกอบกำลังได้รับการปรับปรุงอย่างมากเมื่อเทียบกับมอเตอร์แบบอะซิงโครนัส กระแสไฟที่ใช้จะลดลงมากกว่า 10%เนื่องจากการลดลงของกระแสไฟฟ้าในการทำงานและการสูญเสียของระบบ จึงสามารถบรรลุผลการประหยัดพลังงานได้ประมาณ 1%
5. การเพิ่มขึ้นของอุณหภูมิต่ำ, ความหนาแน่นของพลังงานสูง: ต่ำกว่าการเพิ่มขึ้นของอุณหภูมิมอเตอร์แบบอะซิงโครนัสสามเฟส 20K, อุณหภูมิการออกแบบที่เพิ่มขึ้นจะเท่ากันและสามารถทำให้เป็นปริมาตรที่เล็กลง, ประหยัดวัสดุที่มีประสิทธิภาพมากขึ้น
6. แรงบิดเริ่มต้นสูงและความจุเกินพิกัดสูง: ตามความต้องการสามารถออกแบบให้มีแรงบิดเริ่มต้นสูง (3-5 เท่า) และความจุเกินพิกัดสูง
7. ใช้ระบบควบคุมความเร็วความถี่ตัวแปรซึ่งตอบสนองไดนามิกได้ดีกว่าและดีกว่ามอเตอร์แบบอะซิงโครนัส
8. ขนาดการติดตั้งเหมือนกับมอเตอร์แบบอะซิงโครนัสที่ใช้กันอย่างแพร่หลายในปัจจุบัน และการออกแบบและการเลือกนั้นสะดวกมาก
9. เนื่องจากการเพิ่มขึ้นของตัวประกอบกำลัง พลังภาพของหม้อแปลงระบบจ่ายไฟจึงลดลงอย่างมาก ซึ่งช่วยปรับปรุงความสามารถในการจ่ายไฟของหม้อแปลง และยังสามารถลดต้นทุนของสายเคเบิลระบบได้อย่างมาก (โครงการใหม่)
10. เมื่อโครงการใหม่ถูกสร้างขึ้น ระบบขับเคลื่อนทั้งหมดใช้มอเตอร์ซิงโครนัสแม่เหล็กถาวร การลงทุนในโครงการโดยพื้นฐานแล้วเหมือนกับการใช้มอเตอร์แบบอะซิงโครนัส และโครงการสามารถดำเนินการต่อเพื่อรับผลประโยชน์ด้านการประหยัดพลังงานหลังจากวางโครงการ การดำเนินการ;
ในภาคอุตสาหกรรมทั่วไป การเปลี่ยนมอเตอร์แบบอะซิงโครนัสประสิทธิภาพสูงแรงดันต่ำ (380/660/1140V) ระบบจะช่วยประหยัดพลังงานได้ 5% ถึง 30% และมอเตอร์แบบอะซิงโครนัสประสิทธิภาพสูงแบบแรงดันสูง (6kV/10kV) , ระบบบันทึก 2% ถึง 10%