รายละเอียดสินค้า
สถานที่กำเนิด: จีน
ชื่อแบรนด์: ENNENG
ได้รับการรับรอง: CE,UL
หมายเลขรุ่น: พม
เงื่อนไขการชำระเงินและการจัดส่ง
จำนวนสั่งซื้อขั้นต่ำ: 1 ชุด
ราคา: USD 500-5000/set
รายละเอียดการบรรจุ: การบรรจุสมุทร
เวลาการส่งมอบ: 15-120 วัน
เงื่อนไขการชำระเงิน: แอล/C, ที/ที
สามารถในการผลิต: 20,000 ชุด / ปี
ชื่อ: |
มอเตอร์แม่เหล็กไฟฟ้า |
ปัจจุบัน: |
เครื่องปรับอากาศ |
ช่วงพลังงาน: |
5.5-3000กิโลวัตต์ |
ความถี่: |
50/60เฮิร์ต |
คุณสมบัติ: |
แรงบิดเริ่มต้นสูง, ความจุเกินพิกัดสูง |
ประสิทธิภาพ: |
IE4 IE5 |
วัสดุ: |
แรร์เอิร์ธ NdFeB |
หน้าที่: |
S1 |
ชื่อ: |
มอเตอร์แม่เหล็กไฟฟ้า |
ปัจจุบัน: |
เครื่องปรับอากาศ |
ช่วงพลังงาน: |
5.5-3000กิโลวัตต์ |
ความถี่: |
50/60เฮิร์ต |
คุณสมบัติ: |
แรงบิดเริ่มต้นสูง, ความจุเกินพิกัดสูง |
ประสิทธิภาพ: |
IE4 IE5 |
วัสดุ: |
แรร์เอิร์ธ NdFeB |
หน้าที่: |
S1 |
มอเตอร์แม่เหล็กนีโอไดเมียมแรงบิดเริ่มต้นสูงและโอเวอร์โหลด
ความถี่
|
50Hz
|
เพาเวอร์แฟกเตอร์สูง
|
เกือบ 1
|
แรงบิดเริ่มต้นขนาดใหญ่
|
มากกว่าที่อื่นถึง 2 เท่า
|
ช่วงความถี่
|
> 1:1000
|
โหมดการทำงาน
|
S1
|
โหมดทำความเย็น
|
ไอซี411
|
เกรดการป้องกันสิ่งที่แนบมา
|
IP54
|
ข้อได้เปรียบ
|
ขนาดเล็ก เบา ประสิทธิภาพสูง เสียงรบกวนต่ำ ฯลฯ
|
มอเตอร์ซิงโครนัสแม่เหล็กถาวรคืออะไร?
มอเตอร์ PM เป็นมอเตอร์ไฟฟ้ากระแสสลับที่ใช้แม่เหล็กฝังอยู่ในหรือติดกับพื้นผิวของโรเตอร์ของมอเตอร์แม่เหล็กถูกใช้เพื่อสร้างฟลักซ์ของมอเตอร์คงที่ แทนที่จะต้องใช้สนามสเตเตอร์เพื่อสร้างสนามโดยการเชื่อมต่อกับโรเตอร์ เช่นเดียวกับกรณีของมอเตอร์เหนี่ยวนำ
การวิเคราะห์หลักการข้อได้เปรียบทางเทคนิคของมอเตอร์แม่เหล็กถาวร
หลักการของมอเตอร์ซิงโครนัสแม่เหล็กถาวรมีดังต่อไปนี้: ในขดลวดสเตเตอร์ของมอเตอร์เป็นกระแสสามเฟส หลังจากกระแสผ่านเข้า มันจะสร้างสนามแม่เหล็กหมุนสำหรับขดลวดสเตเตอร์ของมอเตอร์เนื่องจากโรเตอร์ถูกติดตั้งด้วยแม่เหล็กถาวร ขั้วแม่เหล็กของแม่เหล็กถาวรจึงได้รับการแก้ไข ตามหลักการของขั้วแม่เหล็กในเฟสเดียวกันที่ดึงดูดแรงผลักที่แตกต่างกัน สนามแม่เหล็กหมุนที่สร้างขึ้นในสเตเตอร์จะขับเคลื่อนโรเตอร์ให้หมุน การหมุน ความเร็วของโรเตอร์เท่ากับความเร็วของเสาหมุนที่ผลิตในสเตเตอร์
เนื่องจากการใช้แม่เหล็กถาวรเพื่อสร้างสนามแม่เหล็ก กระบวนการโรเตอร์จึงมีความสมบูรณ์ เชื่อถือได้ และมีขนาดที่ยืดหยุ่น และความสามารถในการออกแบบอาจมีขนาดเล็กเพียงหลายสิบวัตต์ ไปจนถึงเมกะวัตต์ในเวลาเดียวกัน การเพิ่มหรือลดจำนวนคู่ของแม่เหล็กถาวรของโรเตอร์ ทำให้ง่ายต่อการเปลี่ยนจำนวนขั้วของมอเตอร์ ซึ่งทำให้ช่วงความเร็วของมอเตอร์ซิงโครนัสแม่เหล็กถาวรกว้างขึ้นด้วยโรเตอร์แม่เหล็กถาวรแบบหลายขั้ว ความเร็วที่กำหนดอาจต่ำถึงเลขหลักเดียว ซึ่งเป็นเรื่องยากที่มอเตอร์แบบอะซิงโครนัสทั่วไปจะทำได้
โดยเฉพาะอย่างยิ่งในสภาพแวดล้อมการใช้งานความเร็วต่ำกำลังสูง มอเตอร์ซิงโครนัสแม่เหล็กถาวรสามารถขับเคลื่อนโดยตรงด้วยการออกแบบหลายขั้วที่ความเร็วต่ำ เมื่อเทียบกับมอเตอร์ธรรมดาพร้อมตัวลด ข้อดีของมอเตอร์ซิงโครนัสแม่เหล็กถาวรสามารถเน้นได้ .
ความแตกต่างระหว่างมอเตอร์แม่เหล็กถาวรและมอเตอร์แบบอะซิงโครนัส:
01. โครงสร้างโรเตอร์
มอเตอร์อะซิงโครนัส: โรเตอร์ประกอบด้วยแกนเหล็กและขดลวด ส่วนใหญ่โรเตอร์กรงกระรอกและลวดพันโรเตอร์กรงกระรอกหล่อด้วยแท่งอะลูมิเนียมสนามแม่เหล็กของแถบอลูมิเนียมที่ตัดสเตเตอร์จะขับเคลื่อนโรเตอร์
มอเตอร์ PMSM: แม่เหล็กถาวรฝังอยู่ในขั้วแม่เหล็กของโรเตอร์ และถูกขับเคลื่อนให้หมุนโดยสนามแม่เหล็กหมุนที่สร้างขึ้นในสเตเตอร์ตามหลักการของขั้วแม่เหล็กในเฟสเดียวกันเพื่อดึงดูดแรงผลักที่แตกต่างกัน
02. ประสิทธิภาพ
มอเตอร์แบบอะซิงโครนัส: จำเป็นต้องดูดซับกระแสจากการกระตุ้นของกริด ส่งผลให้มีการสูญเสียพลังงานจำนวนหนึ่ง กระแสรีแอกทีฟของมอเตอร์ และตัวประกอบกำลังต่ำ
มอเตอร์ PMSM: สนามแม่เหล็กมาจากแม่เหล็กถาวร โรเตอร์ไม่ต้องการกระแสที่น่าตื่นเต้น และปรับปรุงประสิทธิภาพของมอเตอร์
03. ปริมาตรและน้ำหนัก
การใช้วัสดุแม่เหล็กถาวรที่มีประสิทธิภาพสูงทำให้สนามแม่เหล็กช่องว่างอากาศของมอเตอร์ซิงโครนัสแม่เหล็กถาวรมีขนาดใหญ่กว่าของมอเตอร์แบบอะซิงโครนัสขนาดและน้ำหนักลดลงเมื่อเทียบกับมอเตอร์แบบอะซิงโครนัสจะมีขนาดเฟรมต่ำกว่ามอเตอร์แบบอะซิงโครนัสหนึ่งหรือสองขนาด
04. มอเตอร์สตาร์ทปัจจุบัน
มอเตอร์แบบอะซิงโครนัส: เริ่มต้นโดยตรงด้วยไฟฟ้าความถี่ไฟฟ้า และกระแสเริ่มต้นมีขนาดใหญ่ ซึ่งสามารถเข้าถึง 5 ถึง 7 เท่าของกระแสไฟฟ้าที่กำหนด ซึ่งมีผลกระทบอย่างมากต่อโครงข่ายไฟฟ้าในทันทีกระแสเริ่มต้นขนาดใหญ่ทำให้แรงดันต้านทานการรั่วไหลลดลงของขดลวดสเตเตอร์เพิ่มขึ้น และแรงบิดเริ่มต้นมีขนาดเล็กจึงไม่สามารถสตาร์ทงานหนักได้แม้ว่าจะใช้อินเวอร์เตอร์ แต่ก็สามารถเริ่มทำงานภายในช่วงกระแสไฟขาออกที่กำหนดเท่านั้น
มอเตอร์ PMSM: ขับเคลื่อนโดยตัวควบคุมเฉพาะซึ่งไม่มีข้อกำหนดเอาต์พุตที่กำหนดของตัวลดขนาดกระแสเริ่มต้นจริงมีขนาดเล็ก กระแสจะค่อยๆ เพิ่มขึ้นตามโหลด และแรงบิดเริ่มต้นมีขนาดใหญ่
05. ตัวประกอบกำลัง
มอเตอร์แบบอะซิงโครนัสมีตัวประกอบกำลังต่ำ ต้องดูดซับกระแสรีแอกทีฟจำนวนมากจากโครงข่ายไฟฟ้า กระแสเริ่มต้นขนาดใหญ่ของมอเตอร์แบบอะซิงโครนัสจะทำให้เกิดผลกระทบระยะสั้นต่อโครงข่ายไฟฟ้า และการใช้งานระยะยาวจะทำให้เกิดความเสียหาย ไปยังอุปกรณ์กริดไฟฟ้าและหม้อแปลงไฟฟ้าจำเป็นต้องเพิ่มหน่วยชดเชยพลังงานและทำการชดเชยพลังงานปฏิกิริยาเพื่อให้มั่นใจในคุณภาพของกริดพลังงานและเพิ่มต้นทุนของอุปกรณ์
ไม่มีกระแสเหนี่ยวนำในโรเตอร์ของมอเตอร์ซิงโครนัสแม่เหล็กถาวร และตัวประกอบกำลังของมอเตอร์สูง ซึ่งช่วยปรับปรุงปัจจัยด้านคุณภาพของกริดไฟฟ้า และลดความจำเป็นในการติดตั้งตัวชดเชย
06. การบำรุงรักษา
มอเตอร์แบบอะซิงโครนัส + โครงสร้างตัวลดจะสร้างการสั่นสะเทือน ความร้อน อัตราความล้มเหลวสูง การใช้น้ำมันหล่อลื่นจำนวนมาก และค่าบำรุงรักษาด้วยตนเองสูงมันจะทำให้เกิดการสูญเสียการหยุดทำงานบางอย่าง
มอเตอร์ซิงโครนัสแม่เหล็กถาวรสามเฟสขับเคลื่อนอุปกรณ์โดยตรงเนื่องจากตัวลดถูกกำจัดออกไปแล้ว ความเร็วเอาต์พุตของมอเตอร์จึงต่ำ เสียงรบกวนทางกลต่ำ การสั่นสะเทือนทางกลมีขนาดเล็ก และอัตราความล้มเหลวต่ำระบบขับเคลื่อนทั้งหมดแทบไม่ต้องบำรุงรักษา
มอเตอร์ซิงโครนัสแม่เหล็กถาวรสามเฟสขับเคลื่อนอุปกรณ์โดยตรงเนื่องจากตัวลดถูกกำจัดออกไปแล้ว ความเร็วเอาต์พุตของมอเตอร์จึงต่ำ เสียงรบกวนทางกลต่ำ การสั่นสะเทือนทางกลมีขนาดเล็ก และอัตราความล้มเหลวต่ำระบบขับเคลื่อนทั้งหมดแทบไม่ต้องบำรุงรักษา
รูปคลื่นย้อนกลับ emf
แรงเคลื่อนไฟฟ้าย้อนกลับ ย่อมาจาก แรงเคลื่อนไฟฟ้าย้อนกลับ แต่เรียกอีกอย่างว่า แรงเคลื่อนไฟฟ้าสวนทางแรงเคลื่อนไฟฟ้าย้อนกลับคือแรงดันไฟฟ้าที่เกิดขึ้นในมอเตอร์ไฟฟ้าเมื่อมีการเคลื่อนที่สัมพัทธ์ระหว่างขดลวดสเตเตอร์และสนามแม่เหล็กของโรเตอร์คุณสมบัติทางเรขาคณิตของโรเตอร์จะเป็นตัวกำหนดรูปร่างของรูปคลื่นแรงเคลื่อนไฟฟ้าย้อนกลับรูปคลื่นเหล่านี้อาจเป็นรูปคลื่นไซน์ รูปสี่เหลี่ยมคางหมู รูปสามเหลี่ยม หรือรูปแบบอื่นๆ ที่อยู่ระหว่างนั้น
ทั้งเครื่องเหนี่ยวนำและ PM สร้างรูปคลื่น back-emfในเครื่องเหนี่ยวนำ รูปคลื่นแรงเคลื่อนไฟฟ้าย้อนกลับจะสลายตัวเนื่องจากสนามโรเตอร์ที่เหลือจะค่อยๆ สลายตัวเนื่องจากไม่มีสนามสเตเตอร์อย่างไรก็ตาม ด้วยเครื่อง PM โรเตอร์จะสร้างสนามแม่เหล็กของตัวเองดังนั้นจึงสามารถเหนี่ยวนำให้เกิดแรงดันไฟฟ้าในขดลวดสเตเตอร์ได้ทุกเมื่อที่โรเตอร์เคลื่อนที่แรงดัน Back-emf จะเพิ่มขึ้นเป็นเส้นตรงด้วยความเร็ว และเป็นปัจจัยสำคัญในการกำหนดความเร็วการทำงานสูงสุด
ทำไมต้องเลือกมอเตอร์ไฟฟ้ากระแสสลับแบบแม่เหล็กถาวร?
มอเตอร์ไฟฟ้ากระแสสลับชนิดแม่เหล็กถาวร (PMAC) มีข้อดีหลายประการเหนือมอเตอร์ประเภทอื่นๆ ได้แก่:
ประสิทธิภาพสูง: มอเตอร์ PMAC มีประสิทธิภาพสูงเนื่องจากไม่มีการสูญเสียทองแดงของโรเตอร์และการสูญเสียขดลวดที่ลดลงสามารถบรรลุประสิทธิภาพได้สูงถึง 97% ส่งผลให้ประหยัดพลังงานได้อย่างมาก
ความหนาแน่นของพลังงานสูง: มอเตอร์ PMAC มีความหนาแน่นของกำลังสูงกว่าเมื่อเทียบกับมอเตอร์ประเภทอื่น ซึ่งหมายความว่าสามารถผลิตกำลังได้มากขึ้นต่อหน่วยขนาดและน้ำหนักทำให้เหมาะสำหรับการใช้งานในพื้นที่จำกัด
ความหนาแน่นของแรงบิดสูง: มอเตอร์ PMAC มีความหนาแน่นของแรงบิดสูง ซึ่งหมายความว่าสามารถผลิตแรงบิดได้มากขึ้นต่อหน่วยขนาดและน้ำหนักทำให้เหมาะสำหรับการใช้งานที่ต้องการแรงบิดสูง
ลดการบำรุงรักษา: เนื่องจากมอเตอร์ PMAC ไม่มีแปรง จึงต้องการการบำรุงรักษาน้อยและมีอายุการใช้งานยาวนานกว่ามอเตอร์ประเภทอื่น
ปรับปรุงการควบคุม: มอเตอร์ PMAC มีการควบคุมความเร็วและแรงบิดที่ดีกว่าเมื่อเทียบกับมอเตอร์ประเภทอื่น ทำให้เหมาะสำหรับการใช้งานที่ต้องการการควบคุมที่แม่นยำ
เป็นมิตรกับสิ่งแวดล้อม: มอเตอร์ PMAC เป็นมิตรกับสิ่งแวดล้อมมากกว่ามอเตอร์ประเภทอื่นๆ เนื่องจากใช้โลหะหายาก ซึ่งรีไซเคิลได้ง่ายกว่าและก่อให้เกิดขยะน้อยกว่าเมื่อเทียบกับมอเตอร์ประเภทอื่นๆ
โดยรวมแล้ว ข้อดีของมอเตอร์ PMAC ทำให้เป็นตัวเลือกที่ยอดเยี่ยมสำหรับการใช้งานที่หลากหลาย รวมถึงยานยนต์ไฟฟ้า เครื่องจักรอุตสาหกรรม และระบบพลังงานหมุนเวียน
SPM กับ IPM
มอเตอร์ PM สามารถแบ่งออกเป็นสองประเภทหลัก: มอเตอร์แม่เหล็กถาวรพื้นผิว (SPM) และมอเตอร์แม่เหล็กถาวรภายใน (IPM)การออกแบบมอเตอร์ทั้งสองประเภทไม่มีแท่งโรเตอร์ทั้งสองประเภทสร้างฟลักซ์แม่เหล็กโดยแม่เหล็กถาวรที่ติดอยู่กับหรือด้านในของโรเตอร์
มอเตอร์ SPM มีแม่เหล็กติดอยู่ที่ด้านนอกของพื้นผิวโรเตอร์เนื่องจากการติดตั้งเชิงกลนี้ ความแข็งแรงเชิงกลจึงอ่อนแอกว่ามอเตอร์ IPMความแข็งแรงเชิงกลที่อ่อนลงจะจำกัดความเร็วเชิงกลที่ปลอดภัยสูงสุดของมอเตอร์นอกจากนี้ มอเตอร์เหล่านี้ยังมีความเค็มแม่เหล็กที่จำกัดมาก (Ld ≈ Lq)ค่าความเหนี่ยวนำที่วัดได้ที่ขั้วโรเตอร์นั้นสอดคล้องกันโดยไม่คำนึงถึงตำแหน่งของโรเตอร์เนื่องจากอัตราส่วนความเด่นที่ใกล้เคียงกัน การออกแบบมอเตอร์ SPM จึงอาศัยองค์ประกอบแรงบิดแม่เหล็กอย่างมาก หากไม่สมบูรณ์ เพื่อสร้างแรงบิด
มอเตอร์ IPM มีแม่เหล็กถาวรฝังอยู่ในตัวโรเตอร์ตำแหน่งของแม่เหล็กถาวรทำให้มอเตอร์ IPM มีเสียงกลไกดีมาก และเหมาะสำหรับการทำงานที่ความเร็วสูงมาก ไม่เหมือนกับ SPMมอเตอร์เหล่านี้ถูกกำหนดโดยอัตราส่วนความเค็มแม่เหล็กที่ค่อนข้างสูง (Lq > Ld)เนื่องจากความเค็มแม่เหล็ก มอเตอร์ IPM มีความสามารถในการสร้างแรงบิดโดยใช้ประโยชน์จากทั้งส่วนประกอบแม่เหล็กและแรงบิดแบบไม่ฝืนของมอเตอร์
โครงสร้างมอเตอร์ PM สามารถแยกออกได้เป็นสองประเภท: ภายในและพื้นผิวแต่ละหมวดหมู่มีหมวดย่อยของหมวดหมู่มอเตอร์พื้นผิว PM สามารถมีแม่เหล็กอยู่บนหรือแทรกเข้าไปในพื้นผิวของโรเตอร์ เพื่อเพิ่มความทนทานของการออกแบบการวางตำแหน่งและการออกแบบมอเตอร์แม่เหล็กถาวรภายในอาจแตกต่างกันไปมากแม่เหล็กของมอเตอร์ IPM สามารถใส่เข้าไปเป็นบล็อกขนาดใหญ่หรือทำเป็นเซเมื่อเข้าใกล้แกนกลางมากขึ้นอีกวิธีหนึ่งคือการฝังไว้ในรูปแบบซี่ล้อ
มอเตอร์แม่เหล็กถาวร (PM) แบบไร้แปรงถ่านทำงานด้วยแหล่งจ่ายไฟ AC จึงมักเรียกกันว่ามอเตอร์ PMACการใช้แม่เหล็กถาวรทำให้ไม่จำเป็นต้องใช้ตัวนำ (แท่งโรเตอร์) ดังนั้นการสูญเสียของโรเตอร์จึงหมดไปการออกแบบนี้ทำให้สามารถรวมประสิทธิภาพสูง ความเร็วต่ำ และแรงบิดสูงไว้ในแพ็คเกจเดียวสำหรับมอเตอร์ขนาดเล็ก ประสิทธิภาพของมอเตอร์ PM อาจสูงกว่ามอเตอร์ประสิทธิภาพมาตรฐานรุ่นเก่า 10% ถึง 15% ที่จุดโหลดเดียวกันประสิทธิภาพที่เพิ่มขึ้นเหล่านี้ครอบคลุมช่วงโหลดของมอเตอร์ทั่วไปทั้งหมด
การล้างอำนาจแม่เหล็กถาวร
แม่เหล็กถาวรแทบจะไม่ถาวรและมีความสามารถจำกัดสามารถออกแรงบางอย่างกับวัสดุเหล่านี้เพื่อล้างอำนาจแม่เหล็กได้กล่าวอีกนัยหนึ่งคือสามารถขจัดคุณสมบัติทางแม่เหล็กของวัสดุแม่เหล็กถาวรได้สารแม่เหล็กถาวรสามารถถูกลดอำนาจแม่เหล็กได้หากวัสดุถูกทำให้เครียดมาก ปล่อยให้อุณหภูมิสูงถึงระดับสำคัญ หรือได้รับผลกระทบจากการรบกวนทางไฟฟ้าขนาดใหญ่
ประการแรก การรัดแม่เหล็กถาวรโดยทั่วไปทำได้ด้วยวิธีทางกายภาพวัสดุแม่เหล็กสามารถถูกลดอำนาจแม่เหล็กได้ หากไม่อ่อนตัวลง หากได้รับแรงกระแทก/การตกกระแทกอย่างรุนแรงวัสดุ ferromagnetic มีคุณสมบัติแม่เหล็กโดยธรรมชาติอย่างไรก็ตาม คุณสมบัติทางแม่เหล็กเหล่านี้สามารถแผ่ออกมาได้หลายทิศทางวิธีหนึ่งที่ทำให้วัสดุเฟอร์โรแมกเนติกถูกทำให้เป็นแม่เหล็กคือการใช้สนามแม่เหล็กแรงสูงกับวัสดุเพื่อจัดแนวไดโพลแม่เหล็กการจัดตำแหน่งไดโพลเหล่านี้เป็นการบังคับสนามแม่เหล็กของวัสดุให้อยู่ในอ่างเฉพาะผลกระทบที่รุนแรงสามารถลบการเรียงตัวของอะตอมของโดเมนแม่เหล็กของวัสดุ ซึ่งทำให้ความแรงของสนามแม่เหล็กที่ต้องการอ่อนลง
ประการที่สอง อุณหภูมิอาจส่งผลต่อแม่เหล็กถาวรได้เช่นกันอุณหภูมิจะบังคับให้อนุภาคแม่เหล็กในแม่เหล็กถาวรเกิดการปั่นป่วนไดโพลแม่เหล็กมีความสามารถในการทนต่อการกวนด้วยความร้อนได้ในระดับหนึ่งอย่างไรก็ตาม การกวนเป็นเวลานานอาจทำให้ความแรงของแม่เหล็กอ่อนลง แม้ว่าจะเก็บไว้ที่อุณหภูมิห้องก็ตามนอกจากนี้ วัสดุที่เป็นแม่เหล็กทั้งหมดยังมีเกณฑ์ที่เรียกว่า "อุณหภูมิคูรี" ซึ่งเป็นเกณฑ์ที่กำหนดอุณหภูมิที่การกวนด้วยความร้อนทำให้วัสดุลดอำนาจแม่เหล็กลงอย่างสมบูรณ์คำศัพท์เช่น coercivity และ retentivity ใช้เพื่อกำหนดความสามารถในการรักษาความแข็งแรงของวัสดุแม่เหล็ก
ในที่สุด การรบกวนทางไฟฟ้าขนาดใหญ่อาจทำให้แม่เหล็กถาวรลดอำนาจแม่เหล็กได้การรบกวนทางไฟฟ้าเหล่านี้อาจมาจากการที่วัสดุทำปฏิกิริยากับสนามแม่เหล็กขนาดใหญ่หรือหากมีกระแสไฟฟ้าจำนวนมากไหลผ่านวัสดุในลักษณะเดียวกับสนามแม่เหล็กแรงสูงหรือกระแสสามารถใช้จัดไดโพลแม่เหล็กของวัสดุ สนามแม่เหล็กแรงสูงหรือกระแสอื่นที่ใช้กับสนามที่สร้างโดยแม่เหล็กถาวรอาจส่งผลให้เกิดการล้างอำนาจแม่เหล็ก